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Abstract

This note first discusses the density profile of a polytropic star. Then, it is shown that a
radiative outer envelope of a star can be roughly described by a polytropic equation of state
with y =~ 4/3. Finally, the negligible-mass outer layers of the star is studied.

Lane-Emden Equation

Defining p = p.60", y =1+ 1/n, P = Kp¥ = Kpi“/ne”“, @ = (n+ l)Kpcl/n_l/(47rG), and
& = r/a, the equation of hydrostatic equilibrium (dP/dr = —47Gpm(r)/r?) and mass continuity
(dm/dr = 47rpr2) can be written in the following Lane-Emden form
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The boundary conditions are 6(¢ = 0) = 1 and d9/dé (&€ = 0) = 0 (since dP/dr = 0 at r = 0).

The above equation can be solved by defining a vector X = (0, 9)T, where ¢ = —£2d6/d¢. The

spatial gradient of X is given by

dx 2 2,mT
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and the boundary condition is X (¢ =0) = (1,0). We integrate the above vector equation from
¢ = 0 to a maximum &px Where 6 has decreased to 0. It can be seen that ¢ > 0 is a monotonically
increasing function of £ and 6(¢) is a monotonically decreasing function.

It should be noted that since d¢/dé = £260" « r?p o dm/dr, ¢(€) is proportional to the mass

coordinate:
m(r)
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Once the functions 6(¢) and ¢(&) have been numerically obtained (including the value of &nax),
we can solve for the two constants p. and K from the physical stellar mass M and radius R by

M
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The results are
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The moment of inertia of a spherical shell of thickness dr is dI = (87/3)p(r)r*dr, which can
be obtained by differentiating I = (2/5) M R? for a uniform sphere. Then, the moment of inertia of
the entire star is given by
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where
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It is common to define a convenient constant
k= (2/3)]/(Pmaxma) (8)

such that I = kM R?.

The central potential of the star is given by the sum of the contribution from all spherical shelld]|
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where we have used d¢/dé = £20", M/R = 410° pe@max /Emax, and
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Polynomial fits to the numerical results are

Emax ~ 0.05583n* — 0.2165n% + 0.5656n% + 0.1914n + 2.544,
Pmax ~ 0.02393n* — 0.2363n> + 0.989n> — 2.402n + 4.767,
k=1/(MR?) ~2.112 x 107*n* - 1.969 x 10~31> + 0.020061> — 0.1561n + 0.3992,
®./(-GM/R) ~ 0.03297n* — 0.12461° + 0.3245n° + 0.2092n + 1.557,

(1n

which are accurate to fractional errors < 0.2% for n € (0.5,3) (the above k fit has maximum
fractional error of 2 X 10™).

The gravitational potential energy of the star is given by
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The specific thermal energy is given by e = P/[p(y — 1)], so the total thermal energy is
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1Remember that the potential inside a spherical shell of mass dm and radius r is constant and equal to the surface
value of —Gdm/r.



Miraculously, the condition of hydrostatic equilibrium dictates the potential and thermal energies
of a star to be (cf. Chandrasekhar)
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The total binding energy of a star is (physical systems correspond to n < 3)
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Finally, let us consider how the star’s radius responds as it loses mass rapidly such that the entropy
profile of the remaining layers stays unchanged. Fixing the polytropic index n and enforcing dK = 0,

we obtain
dinR n-3 2-y

= = . 18
dinM n-1 4-3y (18)
7 [— | R — L R R ] I T T
[ == Enm xR —®.(R/GM) P
6L Snaxx M e _UR/GM?)=3((5-n) 7T 2
C W0I/(MR?) e T(RJGM?)=n)(5—n) " ]
5F /_,./‘ ]
3F T S 3
20 e TR T .
1r _,_,__-._._._._._._._._._._._._._._._._.-._._._._._.::..‘__.‘_‘.:::'.‘.’.::'.___._:-::_-:. .... :
O n I-“-\"-“_l-—“-\"_.I-—"\ T T | I I [ 7
0.5 1.0 1.5 2.0 2.5 3.0
n=1/(y=1)

Fig. 1.— The integral quantities &m,x (related to stellar radius), ¢max (related to stellar mass), k = I/ (M RQ)
(related to the moment of inertia), @ (central potential), U (gravitational potential energy), and T (thermal
energy), for a polytropic star. Here, we show 10k (instead of k) for clarity.

Radiative Envelope

The polytropic equation of state works well for a convective envelope where the entropy is
constant — and we have P o p°/3 across the entire convective envelope.

However, for a radiative envelope, one needs to consider the radiative diffusion
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This should be combined with the equation for hydrostatic equilibrium

dpP GM
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Let us assume that the pressure is dominated by the gas (instead of radiation), which means
P ~ pkT/(ump). This allows us to elliminate p in the above two equations. Taking the ratio
between these two equations, we obtain
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Since we are considering the outer envelope, the right-hand side of the above equation is nearly a
constant.

Let us then consider a particular form of Rosseland-mean opacity k = koP9T797%, and for
Kramer’s law, one has ¢ = 1 and s = 3.5. Then, the relation between 7" and P is given by
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One can integrate the above equation from the outer boundary (near the photosphere) where T' = T,,,
and P = Py. Then, in the regions far below the photosphere where T > T, and P > Py, one
must obtain the scaling

T4+q+s o Pq+1, (23)

which means P oc p!+@*+D/(s+3)  For Kramer’s law (¢ = 1 and s = 3.5), we have P « p'-3!, which
is very close to the case of a y = 4/3 polytrope. The proportional constant K = P/p” depends
on the stellar luminosity and mass. This applies to main-sequence stars with masses greater than
about 1M, (for lower-mass stars, the envelope becomes convective due to partial ionization of H).

In the extreme limit where the pressure is dominated by radiation P ~ aT*/3 (although this is
usually not fully realized), then the radiative transfer equation can be written as
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Taking the ratio between the above equation and the hydrostatic equilibrium equation, one obtains

I - AdrGMc

= Lgdd. (25)

In order to maintain locally Eddington luminosity everywhere, the opacity must be nearly constant
over the envelope. This can be achieved if « is dominated by electron scattering. In deeper layers
where k = kop9T~*, one must have T o p9/ and hence P oc p*/5. For Kramer’s law (¢ = 1 and
s = 3.5), we have P « p''4 — a radiation pressure-dominated envelope is expected to be highly
centrally concentrated.



Structure of the outer layers

The structure of the outermost layers of the star is very simple when we ignore the self-gravity.
From hydrostatic equilibrium and the equation of state, we obtain
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This can be easily integrated using the boundary condition of p(r = R) =0,

n
vy = Y= DEM (1 1 _|emM (1 1 27
prr) vK r R)’ or p(r) (n+ DK \r RJ| @7
The pressure profile is given by
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Using K in eq. (5)), we obtain
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This means that the pressure scaleheight near the surface is of the order H ~ R — r (for r = R).
Another consequence is that the isothermal sound speed ¢y = /P/p has the following simple form
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The exterior mass is given by
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where B(a, b, x) = fOx 1%~1(1-1¢)?~1dt is the incomplete Beta-function. Using the entropy constant
K ineq. (5)), we obtain
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In the limit /R =~ 1, this can be further simplified into
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,for 1 —r/R < 1. (34)
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In the same limit, the pressure profile is given by

p max®>max n+1

,forl-r/R <1, (35)
where P = GM?/(47R*) is a rough estimate of the mean pressure inside the star. Thus, we have
arrived at the following interesting result

P(r) M (P)
P M

(36)

where M (P) is the mass exterior to a critical radius specified by a given pressure P.
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