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Abstract

This note shows that the probability distribution of the position of a random walker after
𝑁 (≫ 1) steps is an 𝑑-dimensional Gaussian, provided that the steps are uncorrelated and
isotropic in 𝑑 dimensions.

General Consideration
At each step, a walker moves by 𝒓 which is randomly drawn from a probability distribution

𝑝(𝒓). This probability distribution is assumed to be isotropic and hence 𝑝(𝒓) only depends on
the magnitude of 𝑟 = |𝒓 |, and it has been normalized such that

∫
𝑝(𝒓) d𝑑 𝒓 = 1, where d𝑑 𝒓 is

the 𝑑-dimensional volume element. The probability distribution 𝑝(𝒓) can be an arbitrary scalar
function, and the results in this note apply as long as the mean-squared stepsize is well defined

⟨𝑟2⟩ =
∫

𝑟2 𝑝(𝒓) d𝑑 𝒓. (1)

Suppose the probability distribution of the walker’s position 𝑹 after 𝑁 steps is 𝑃𝑁 (𝑅). Then,
the following recurrence relation must hold

𝑃𝑁+1(𝑹) =
∫

𝑝(𝒓)𝑃𝑁 (𝑹 − 𝒓) d𝑑 𝒓. (2)

In the limit 𝑁 ≫ 1, we expect that 𝑃𝑁 (𝑹) varies on lengthscales much longer than the typical step
size 𝒓, so it is reasonable to Taylor expand the 𝑃𝑁 (𝑹 − 𝒓) term as follows

𝑃𝑁 (𝑹 − 𝒓) ≈ 𝑃𝑁 (𝑹) −
∑︁
𝑖

𝑟𝑖𝜕𝑅𝑖
𝑃𝑁 (𝑹) +

1
2

∑︁
𝑖 𝑗

𝑟𝑖𝑟 𝑗𝜕𝑅𝑖
𝜕𝑅 𝑗

𝑃𝑁 (𝑹) + . . . , (3)

where 𝑖 and 𝑗 goes over all dimensions. The linear term does not contribute to the integral on the
RHS of eq. (2) because 𝑝(𝒓) is forward-backward symmetric along any axis 𝑖 = 1, 2, . . . , 𝑑. As
for the quadratic term involving

∑
𝑖 𝑗 𝑟𝑖𝑟 𝑗 , we only need to consider the terms with 𝑖 = 𝑗 because

each step is isotropic (meaning that there is no correlation between 𝑖 and 𝑗 directions if 𝑖 ≠ 𝑗).
Thus, we obtain

∫
𝑝(𝒓)

(∑
𝑖 𝑗 𝑟𝑖𝑟 𝑗

)
d𝑑 𝒓 =

∫
𝑝(𝒓)

(∑
𝑖 𝑟

2
𝑖

)
d𝑑 𝒓 = ⟨𝑟2⟩. We also know that 𝑃𝑁 (𝑹) is

isotropic along all axes 𝑖 = 1, 2, . . . , 𝑑, so we write 𝜕2
𝑅𝑖
𝑃𝑁 (𝑹) = 𝑑−1 ∑

𝑖 𝜕
2
𝑅𝑖
𝑃𝑁 (𝑹) = 𝑑−1∇2𝑃𝑁 (𝑹).

Therefore, the probability distribution at step 𝑁 + 1 is given by

𝑃𝑁+1(𝑹) = 𝑃𝑁 (𝑹) +
⟨𝑟2⟩
2𝑑

∇2𝑃𝑁 (𝑹). (4)

In the limit 𝑁 ≫ 1, we expect that 𝑃𝑁 (𝑹) varies on timescales much longer than the typical time
step Δ𝑡, so we can approximate 𝑃𝑁 (𝑹) as a continuous, time-dependent probability distribution
𝜌(𝑹, 𝑡), which satisfies the following diffusion equation

𝜕𝑡𝜌(𝑹, 𝑡) = 𝐷∇2𝜌 (𝑹, 𝑡) , 𝐷 =
⟨𝑟2⟩
2𝑑Δ𝑡

. (5)
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Here 𝐷 is called a time-independent diffusion coefficient.

For a given initial condition 𝜌(𝑹, 𝑡 = 0) = 𝛿(𝑹), the above diffusion equation can be solved by
separation of variables. It can be shown that 𝜌(𝑹, 𝑡) has the following 𝑑-dimensional Gaussian
form

𝜌(𝑹, 𝑡) ∝ exp
[
− 𝑅2

2𝜎2(𝑡)

]
, 𝜎2 = 2𝐷𝑡 =

⟨𝑟2⟩
𝑑Δ𝑡

𝑡 =
⟨𝑟2⟩
𝑑

𝑁, (6)

and it is normalized such that
∫
𝜌 d𝑑𝑹 = 1. Here Δ𝑡 = 𝑡/𝑁 is the time step. We see that the

characteristic radius of the probability density 𝑑-dimensional “cloud” grows as the square root of
time 𝑡 or the number of steps 𝑁 , i.e., 𝜎 ∝ 𝑡1/2 ∝ 𝑁1/2. Sometimes, we also want to know the PDF
for the distance from the origin 𝑅 and it is given by

𝜌(𝑅, 𝑡) = 𝐴𝑑𝑅
𝑑−1𝜌(𝑹, 𝑡), (7)

where 𝐴𝑑 = 2𝜋𝑑/2/Γ(𝑑/2) (where Γ(𝑥) is the Gamma function) is the surface area of the unit
sphere in d dimensions (𝐴1 = 2, 𝐴2 = 2𝜋, 𝐴3 = 4𝜋, 𝐴4 = 2𝜋2, . . .).

Another result is that, if the current distance to the origin is much greater than the step size
𝑅 ≫

√︁
⟨𝑟2⟩, then each step corresponds to a typical intensity variation of the order ∼ 𝑅

√
𝑟2, which

is much greater than the naı̈ve expectation of
√
𝑟2. Let us consider going from 𝑹 (known) to

𝑹′ = 𝑹 + 𝒓, where 𝒓 is a random step. The average intensity variation is

⟨𝑅′2 − 𝑅2⟩ = 2𝑹 · ⟨𝒓⟩ + ⟨𝑟⟩2 = ⟨𝑟2⟩, (8)

which is not surprising. However, the variance of the intensity variation is√︁
⟨(𝑅′2 − 𝑅2)2⟩ =

√︃
4⟨(𝑹 · 𝒓)2⟩ + ⟨𝑟4⟩ =

√︁
2𝑅2⟨𝑟2⟩ + ⟨𝑟4⟩ ≈

√
2𝑅

√︁
⟨𝑟2⟩, (9)

where we have dropped the linear term (as the average is zero) and made use of ⟨(𝑹 · 𝒓)2⟩ =

𝑅2⟨𝑟2⟩/2, and the final approximation is for 𝑅 ≫
√︁
⟨𝑟2⟩. The above variance describes the typical

intensity variation in a step.

Example — 2D
For 𝑑 = 2, we obtain the Rayleigh distribution

𝑃𝑁 (𝑹) =
1

𝜋𝑁 ⟨𝑟2⟩
exp

(
− 𝑅2

𝑁 ⟨𝑟2⟩

)
, 𝑃𝑁 (𝑅) =

2𝑅
𝑁 ⟨𝑟2⟩

exp
(
− 𝑅2

𝑁 ⟨𝑟2⟩

)
. (10)

Let us further consider various moments of the PDF of the distance 𝑅,

⟨𝑅𝑛⟩ =
∫ ∞

0
𝑃𝑁 (𝑅)𝑅𝑛 d𝑅 = Γ(𝑛/2 + 1)

(
𝑁 ⟨𝑟2⟩

)𝑛/2
, (11)

The average distance from the origin is ⟨𝑅⟩ = 2−1
√︁
𝜋𝑁 ⟨𝑟2⟩. The variance of the distance to the

origin is √︁
⟨(𝑅 − ⟨𝑅⟩)2⟩ =

√︁
⟨𝑅2⟩ − ⟨𝑅⟩2 =

√︂
1 − 𝜋

4

(
𝑁 ⟨𝑟2⟩

)1/2
, (12)
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Fig. 1.— 2D random walks with three different step sizes 𝑟 = 0.5, 1, 2 (fixed in each simulation such that
⟨𝑟2⟩ = 𝑟2). The number of steps in each simulation is taken to be 𝑁 = ⟨𝑅2⟩/𝑟2, and we take 𝑅2 = 502 for all
three simulations.

which is of the same order as the average distance to the origin (meaning that the uncertainty in
𝑅 is quite large). A nice property of the Rayleigh distribution is that the variance in the intensity
(which is proportional to the square of the amplitude 𝑅) is equal to the average intensity, and this
is because

⟨(𝑅2 − ⟨𝑅2⟩)2⟩ = ⟨𝑅4⟩ − ⟨𝑅2⟩2 = ⟨𝑅2⟩2 =

(
𝑁 ⟨𝑟2⟩

)2
. (13)
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