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This note considers a fast wind running into a static medium and derive the jump conditions
for the forward and reverse shocks. An arbitrary wind velocity is considered. The only
assumption here is that the unshocked gas is initially dynamically cold everywhere.

1 Forward Shock and Reverse Shock Structure

There are 4 regions: unshocked medium (1), shocked medium (2), shocked wind (3), and
unshocked wind. Our lab frame is chosen such that the unshocked medium (region 1)
is at rest. Regions (1) and (2) are separated by the forward shock (FS), which causes a
pressure jump and a density jump between them. we assume the unshocked medium to
be pressureless or dynamically cold, so the Mach number of the FS approaches infinity.
Similarly, regions (3) and (4) are separated by the reverse shock (RS). In the lab frame,
the unshocked wind has speed v4, and we assume that the unshocked wind (region 4) to
be pressureless, so the Mach number of the RS also approaches infinity.

Between region (2) and (3), there is a contact discontinuity that produces no pressure
jump. If the system is in a steady state1, these two regions move at the same speed v2 = v3
and they have the same pressure P2 = P3. Hereafter, we denote the Lorentz factor of the
shocked regions (2 and 3) as Γ = Γ2 = Γ3, and their velocity as v = v2 = v3. However,
there is a density jump between (2) and (3), i.e., ρ2 ̸= ρ3.

Hereafter, pressure P , thermal energy density e, and density ρ are all measured in the rest
frame of a given fluid; whereas the velocity vi and Lorentz factor Γi (i = 1, 2, 3, 4) are
measured in the lab frame (= the comoving frame of region 1).

At the two shocks, there are jump conditions that connect the gas properties behind and
ahead of each shock. These two sets of jump conditions allow us to solve all properties of

1In realistic physical systems, the density of the unshocked wind may vary with time (e.g., on a dynamical
timescale of the wind), and the density of the unshocked medium may vary with position. Here, we ignore
such complexities. We assume that the unshocked medium has uniform density ρ1 = const and that the
wind has uniform density ρ4 = const and steady velocity v4 = const.
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the shocked gas (regions 2 and 3) given the properties of the unshocked gas: ρ1, ρ4 and v4.
To close the system of equations, we need an equation of state.

For simplicity, we assume that the gas is made of pure hydrogen and the pressure in the
shocked regions is dominated by hot protons — ignoring the contribution from electrons2.
We further assume that the hot protons follow a Maxwell-Jüttner distribution in Lorentz
factor,

f(γ) =
γ2β

θK2(1/θ)
e−γ/θ, θ ≡ kBT/(mpc

2) (1)

where β is the thermal velocity in units of the speed of light c, and γ = 1/
√
1− β2 is the

corresponding Lorentz factor, K2 is the modified Bessel function of the second kind, θ is
a dimensionless temperature, and the distribution function has been normalized such that∫∞
1 f(γ)dγ = 1. The Lorentz factor distribution can be converted into a distribution in
the dimensionless 4-velocity3 u = γβ,

f(u) =
u2

θK2(1/θ)
e−γ/θ, (2)

which is normalized such that
∫∞
0 f(u)du = 1. The thermal energy density of the gas is

then given by

e = ρc2
∫ ∞

0
(γ − 1)f(u)du, (3)

where ρ = nmp is the rest-mass density measured in the comoving frame, and n is the
proton number density. The pressure is given by

P =
1

3
ρc2

∫ ∞

0
uβf(u)du. (4)

It is possible to show that the pressure is always given by P = nkBT (valid for all θ), so we
have P = θρc2. Let us define the average thermal Lorentz factor as γ̄, which is a function
of temperature θ as given by

γ̄(θ) =

∫ ∞

0
γf(u)du. (5)

2There are two caveats here: (1) it is widely believed that collisionless shocks can accelerate non-
thermal protons and electrons (which are observed as cosmic rays), which take roughly ∼10% of the energy
density in the shocked regions; (2) collisionless plasma processes can rapidly heat up thermal electrons to
a temperature Te ∼ 0.3Tp [PCS15], so pressure contribution by thermal electrons is not negligible. These
complexities, as well as the assumption of pure hydrogen composition (ignoring helium), cause our model
to have errors of the order a few 10% of percent. In many astrophysical applications, we do not hope to
pin down the plasma properties to better than a factor of 2, so these assumptions may be OK. If better
accuracies are needed (e.g., in laboratory applications), the model will be more complicated.

3This is the magnitude of the spatial components of the 4-velocity in special relativity.
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Then, the thermal energy density can be written as e = (γ̄ − 1)ρc2. It is possible to show
that γ̄−1 ≈ 1.5θ in the non-relativistic limit (θ ≪ 1) and γ̄−1 ≈ 3θ in the ultra-relativistic
limit (θ ≫ 1).

We then define an adiabatic index4 that is given by the ratio between the pressure and
energy density

κ(θ) =
P

e
=

θ

γ̄ − 1
∈ (1/3, 2/3). (6)

We use the following approximation for the adiabatic index [Uhm11]

κ ≈ 1

3

(
1 +

1

γ̄

)
, (7)

as it is reasonably accurate (with a maximum fractional error of 4.8%) and drastically
simplifies the expression for the jump conditions. Fig. 1 comparison between the accurate
and approximate adiabatic indices.

Some readers might still worry about the inaccuracy of our approximation for κ. However,
one should keep in mind that we have ignored the contribution to pressure and thermal
energy density by thermal electrons, and non-thermal cosmic rays. There are large uncer-
tainties in these components (as their energy shares depend on the physics of collisionless
plasma near the shock front), and we expect them to share ≳ 10% of the total thermal en-
ergy. Our model also ignore the contribution from ions other than hydrogen (e.g. helium),
which may share ∼ 10% of the total thermal energy. Thus, our model is rather crude
anyway and is certainly not to be trusted to better than 10% accuracy. In the following,
we proceed with our approximate κ in eq. (7), which reasonably captures the transition
from non-relativistic limit (κ ≈ 2/3) to the ultra-relativistic limit (κ ≈ 1/3).

Using the approximate adiabatic index, the jump conditions for the forward shock between
region 1 and 2 become

P2 = (4/3)(Γ2 − 1)ρ1c
2, (8)

ρ2 = 4Γρ1, (9)

e2 = 4(Γ2 − 1)ρ1c
2, (10)

where Γ is the bulk Lorentz factor of regions 2 and 3 (they have the same Lorentz factor).
It is important to note that e2 = (Γ− 1)ρ2c

2, so the proton mean Lorentz factor in region
2 is γ̄2 = Γ.

More generally, for any shock, the mean thermal Lorentz factor in the shocked region is
equal to the relative Lorentz factor between the unshocked and shocked region. The forward

4The relationship between the polytropic adiabatic index γ̂ ≡ (∂ lnP/∂ ln ρ)ad and our new definition
κ ≡ P/e is: κ = γ̂ − 1. This can be shown from the first law of thermodynamics: d(eV ) = κ−1d(PV ) =
κ−1(V dP + PdV ) = −PdV (for dQ = 0), and then V dP = −(κ+ 1)PdV or d lnP = −(κ+ 1) d lnV .
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Figure 1: Adiabatic index κ = P/e for a mono-atomic gas with Maxwell-Jüttner distribu-
tion. The black solid line is exact, and the red dotted line is our adopted approximation.

shock is a special case as the pre-shock gas is at rest and hence the relative Lorentz factor
is Γr,fs = Γ. For the reverse shock, the relative Lorentz factor between the two adjacent
regions across the shock is

Γr,rs = (1− β4β)Γ4Γ, (11)

and the relative speed between the two layers is

βr,rs = (β4 − β)/(1− β4β). (12)

Taking product of the two expressions above, we obtain

Γr,rs βr,rs = Γ4Γ(β4 − β). (13)

Thus, the jump conditions between region 3 and 4 are given by

P3 = (4/3)(Γ2
r,rs − 1)ρ4c

2, (14)

ρ3 = 4Γr,rs ρ4, (15)

e2 = 4(Γ2
r,rs − 1)ρ4c

2. (16)

Finally, we can use the pressure balance at the contact discontinuity P2 = P3 to solve for
the velocity of the shocked regions (both 2 and 3)

β =
β4

1 + (ρ1/ρ4)
1/2 /Γ4

. (17)
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The 4-velocity of the shocked regions is given by

Γβ =
Γ4β4[

1 + ρ1/ρ4 + 2Γ4 (ρ1/ρ4)
1/2

]1/2 . (18)

Another simpler way of calculating the Lorentz factor of the shocked regions is to consider
the balance of momentum fluxes. In the comoving frame of the shocked regions, the
momentum flux from the wind (region 4) is given by ρ4c

2(Γr,rs βr,rs)
2, which can be obtained

since each proton carries a momentum of Γr,rs βr,rsmpc, and the number density of protons
is Γr,rsn4 = Γr,rsρ4/mp, and the protons are all moving at velocity βr,s. Similarly, the
momentum flux of the medium (region 1) moving in the opposite direction is given by
ρ1c

2(Γβ)2. The balance between these two momentum fluxes means that

ρ4c
2(Γr,rs βr,rs)

2 = ρ1c
2(Γβ)2 ⇒ β =

β4 − β

Γ4 (ρ1/ρ4)
1/2

, (19)

and this leads to eq. (17).

Note that both eqs. (17) and (18) applies to arbitrary β4 across the non-relativistic to
relativistic transition. We find that the shocked regions only becomes non-relativistic
when ρ1 ≫ Γ2

4ρ4, meaning that a weak wind running into a very dense medium. With the
velocity of the shocked regions, we can then plug it back to eq. (11) to obtain the relative
Lorentz factor across the reverse shock, and then it is possible to calculate the properties
of the gas in region 3.

Finally, we would like to know the velocities of the shock fronts in the lab frame. A general
rule from the jump conditions is that, in the comoving frame of the shocked region, the
shock front is always moving away from the shocked region at a velocity β′

s = βr/3, where βr
is the relative speed between the two fluids on each side of the shock (i.e., βr is the speed
at which the unshocked gas in the comoving frame of the shocked region). This shows
that the speed of shock front, as viewed from the shocked region, is always non-relativistic
β′
s < 1/3 (as βr < 1).

Let us apply the above rule to the forward shock. In this case, βr,fs = β, so we obtain
β′
fs = β/3 in the comoving frame of region 2. In the lab frame, the speed and Lorentz

factor of the forward shock are then given by

βfs =
β′
fs + β

1 + β′
fsβ

=
4β

3 + β2
, Γfs = γ′sΓ(1 + β′

sβ) =
4Γ2 − 1√
8Γ2 − 1

. (20)

Then, for the reverse shock, we use βr,rs = (β4 − β)/(1− β4β) and the shock speed in the
comoving frame of region 3, β′

rs = βr,rs/3, and then the lab frame speed and Lorentz factor
of the reverse shock front are given by

βrs =
β − β′

rs

1− β′
rsβ

=
3β − βr,rs
3− ββr,rs

, Γrs = (1− β′
rsβ)Γ

′
rsΓ. (21)
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Figure 2: Four-velocities of the forward shock front, shocked regions, and reverse shock
front. The Lorentz factor of the wind is fixed to be Γ4 = 10. When (ρ1/ρ4)

1/2 ≳ 2Γ4 = 20,
we see that βrs becomes negative and the reverse shock front is propagating backwards in
the lab frame, and this is because β < 1/3 ≈ βr,rs/3 (since βr,rs ≈ 1) and hence βrs < 0.
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When the shocked regions have a high speed β > 1/3, we see that βrs > 0 and hence the
reverse shock front always moving in the same direction as the wind (β4). However, when
the shocked regions have a very low speed (meaning that the wind is running into a very
dense medium), it is possible that βrs < 0 and hence the reverse shock front may propagate
backwards. These speeds are shown in Fig. 2.

Finally, we would like to know which of the two shocks dissipates more energy per unit
time. To make this comparison, we notice that the thermal energy density in the two
shocked regions are comparable (as P2 = P3), so the ratio between the thermal energies in
these two regions is roughly given by the volume ratio. For a one-dimensional system, we
would then look at the expansion rate of regions 2 and 3.

In the comoving frame of the shocked regions, the volume of region 2 is growing at a rate
that is proportional to β′

fs = β/3 whereas the growth rate of the volume of region 3 is
proportional to β′

rs = βr,rs/3. Thus, we are interested in the following ratio

E2

E3
≃ β

βr,rs
=

1 + a−1/Γ4)

1 + a/Γ4
, a ≡ (ρ1/ρ4)

1/2 , (22)

where we have used eqs. (12) and (17). When ρ1 = ρ4 (or a = 1), we obtain β = βr,rs and
hence the energies in regions 2 and 3 are equal to each other (this can also be seen from
eq. 19). When ρ1 > ρ4 (a lighter wind running into a dense medium), we have β < βr,rs or
E2 < E3 and hence the reverse shock dissipates more energy than the forward shock. For
the case of Γ4 = 10, the ratio β/βr,rs is shown by the dark green line in Fig. 2.

If we stare at eq. (22), it is possible to find that E2/E3 ∼ 1 as long as Γ−1
4 ≪ (ρ1/ρ4)

1/2 ≪
Γ4. In the ultra-relativistic limit (Γ4 ≫ 1), we find that the two shocked regions often
have comparable amount of energies, unless the density contrast between regions 1 and 4
is extremely large. However, in the non-relativistic limit (Γ4 ≈ 1), we find E2/E3 ≃ 1/a =

(ρ4/ρ1)
1/2, which means that the two shocked regions can have very different energies

even for moderate density contrast between the wind and surrounding medium (the shock
propagating to the less dense gas dissipates nearly all the energy).
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